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Abstract. This paper is an attempt to set up a local criterion for the existence of 
electromagnetic radiation at a given spatial point, especially in view of the controversies in 
the case of Born fields of a uniformly accelerated charge. The criterion is that there cannot 
exist any time-like line passing through that point over which the magnetic field vanishes. 

1. Introduction 

While it is generally believed that an accelerated charge always has a radiation field 
associated with it, the case of a uniformly accelerated charge has led to conflicting 
conclusions (Pauli 1958, Fulton and Rohrlich 1960, Rohrlich 1965, Bondi and Gold 
1955). The retarded fields for such a charge having the trajectory z = +(a2 + t2) l / ’  
(c = 1) as obtained by Born (1909) may be written as (see Rohrlich 1965): 

E,, = 8 e a 2 p z / t 3  E+=O 

E,  = - ( 4 e a 2 / t 3 ) ( a 2 +  t2  - p 2  - 2’) 

B, = B, = 0 B+ = 8 e a 2 p t / t 3  

where we have used cylindrical coordinates (p,  4, z ,  t )  and 
t = [ 4 a 2 p 2 + ( a 2 + r 2 - p 2 - z  2 ) 2 ] 1/2 . 

As B = O  for t = 0 ,  it was argued that at that instant there was no radiation flux 
anywhere. Furthermore, the situation could be obtained at any other instant by a 
Lorentz transformation and hence apparently the radiation field is absent at all stages. 

This reasoning has been criticised from two sides. Bondi and Gold (1955) argued 
that the solution obtained by Born was not correct as it gave a non-vanishing field even 
in the region z + t < 0. Rohrlich (1965), however, accepted the Born solution as correct 
and applied several other criteria and found a non-vanishing radiation flux. 

In the present paper, the field due to a charge in the motion z = +(a2 +pr’)’/’ is 
presented. The field due to such a charge does not suffer from the defects pointed out by 
Bondi and Gold; nevertheless, there is a space-like hypersurface over which B = 0. 
However, we think that this cannot be taken to mean an absence of radiation; for an 
observer, to see B = 0 continuously, has to travel along a space-like line. For any 
time-like trajectory, B and hence E x  B vanishes only for an instant. 

This paper also makes a critical examination of the problem of radiation. As is well 
known, the Poynting vector may be made to vanish at any space-time point by a suitable 
Lorentz transformation if the field is non-null (see Misner er a1 1973). It can also be 
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seen that the field due to any charge distribution (accelerated or not) is necessarily 
non-null. 

The usual practice of going over to a surface integral at infinity to determine whether 
there is net emission of radiation from the charge suffers from a formal inadequacy. A 
non-vanishing surface integral $ ( E x  B )  . ds means as well that the volume integral 
$ (E2+B2)  du diverges (since /El - / B /  - 0(1 /R) )  when the volume of integration is 
taken to be arbitrarily large. 

Moreover, since the Poynting vector cannot be consistently interpreted as an energy 
flux, it remains a problem to answer uriequivocally the question as to whether there is 
radiation at a particular spatial point. The 'local' criteria as discussed by Rohrlich 
(1965) require a knowledge of the state of motion of the sources and provide no answer 
to the problem as to how an observer is to decide whether there is radiation in his locale 
by performing purely local measurements. 

The criterion that is suggested in the present work is to see whether there is any 
time-like line over which B vanishes. In more physical language this means we have to 
investigate whether an observer in physical motion can exist such that for him B, and 
hence E X  B, is zero permanently or at least for a finite length of time. However, the 
existence of such a time-like line at some spatial point does not preclude the existence of 
radiation as a whole, since such time-like lines may, in general, not be possible through 
all spatial points. 

2. Accelerated charge and Born fields 

The fields due to a charge moving with arbitrary acceleration are well known. If r 
denotes the field point and r' the source point, and if t, t' denote the observation and 
retarded times, respectively, 

e E(r, t )  =$(l- u2)(R - R u )  + R X [ ( R  - R u )  X U ] }  

R x E  
R 

B(r,  t )  = - 

where R = r ( t )  - r' ( t ' ) ,  s = R - U. R and U, a are the velocity and acceleration of the 
charge at the retarded time. 

Conventionally, the first term in both E and B is said to be of the order of 1 /R2 
while the second terms are of the order of 1/R. Then, as the determination of radiation 
involves an integration over a sphere at infinity, the first terms fall off faster and hence 
only the second terms contribute. Therefore these 1/R terms are called the radiation 
terms. 

This splitting is, however, not permissible in general. Both U and a are to be 
evaluated at the retarded time t' = t - R and they thus depend on t' and hence on R. 
Thus the R dependence of terms in E and B depends on the nature of the motion of the 
source. For hyperbolic motion: 
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and one finds that both terms in E and B are of the same order in R. This is also evident 
from the Born solutions. 

It may be noted, however, that if we transform to aframe in which u( t ' )  = 0, only the 
second terms finally contribute to the surface integral of E X  B over any finite sphere 
and hence determine radiation. 

3. Hyperbolic motion with non-uniform acceleration 

Let us consider the retarded fields due to a charge in the motion: 

z = +(a2+pt2)1'2 (3) 

where 0 < p < 1. Let (x, y, z ,  t )  denote the field point, and zret denote the source point. 
Then the fields are: 

We have retained zret and R as, in general, explicit expressions in terms of ( x ,  y, z ,  t )  are 
not readily obtainable. 

It may be easily verified that the fields (4) reduce to the Born fields when p = 1. 
The motion (3) is also hyperbolic, but has asymptotes along z = *dpt instead of 

z = ft as in the Born case. (It may be noted that this motion does not have the same 
invariance properties as that of uniform acceleration.) Thus, for p f 1 there is no region 
of space-time inaccessible to the charge and hence there is no region where the fields 
must vanish. Thus the fields (4) are free from the objections raised by Bondi and Gold. 
However, motion with p = 1 involves i = 1 as It1 + CO and hence the Born solutions with 
its apparent defects belong to a physically unattainable situation. We therefore suggest 
that the limit p + 1 is not physically permissible. 

4. The criterion for radiation 

For fields of an accelerated charge, E .  B = 0 and hence E x B = 0 implies B = 0. 
We consider the point r. To know whether there is any radiation at this point, we 

look at the equation B(r,  t )  = 0. Depending on the motion of the source, this may 
represent a line, a two-dimensional surface, a three-dimensional surface, or may even 
be non-existent. 
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If B(r ,  t )  = 0 is satisfied over a time-like line then for the observer whose world line is 
this line, B = 0 always and hence there is no radiation for him at that point. Hence there 
is no real radiation field at that point. 

When no such time-like line exists, a frame in which B = 0 always cannot be found. 
Thus there must be radiation at that point. 

This radiation criterion is strictly local and covariant, and tells us whether there is 
radiation at a particular spatial point by making purely local measurements. The 
application of this criterion for a charge moving with constant velocity is trivial, since a 
single Lorentz transformation to the rest frame of the charge makes B = 0 everywhere 
and for all times, so that radiation is evidently absent. 

For a charge moving in an arbitrary fashion in the absence of external electromag- 
netic radiation there may be some points or regions of space through which time-like 
lines over which B = 0 exist. Evidently, there is no radiation at these points or regions. 
However, there may be other spatial points through which such B = 0 time-like lines are 
not possible. Therefore at these latter points there is radiation. 

Now we consider the problem as to whether the presence of radiation at a point may 
be causally related to some source. In the case under discussion, there is only a single 
point charge moving in some trajectory and no external radiation field. It is, therefore, 
natural to assign the radiation at any point to this charge, and we conclude that the 
charge itself is emitting radiation. 

However, it may appear, in view of the conventional procedure of integrating the 
flux over a sphere enclosing the charge, that when such an integration is carried out the 
effect of radiation at one portion of the surface may be annulled by an opposite flux in 
some other part. This is clearly not possible since this would require the presence of an 
incoming wave and hence advanced fields, which have not been accounted for in the 
evaluation of E and B. Thus, while radiation is absent as a whole only when B = 0 
time-like lines are possible through all points in space, absence of such a time-like line 
through any point implies the presence of radiation in the field as a whole. 

The above criterion leads to the expected results in the standard case. For example, 
in the case of a charge moving uniformly in the circle: 

x‘ = a cos wt’ 

the condition B = 0 implies 

y ’  = a sin wt’ z’=O 

2 ’ = 0  

or 

x cos w ( t  - R )  + y sin w ( t  - R )  = 1/ w2a. 

This equation has real solutions for cos w ( t  - R )  provided 

x 2 + y 2  3 I / ~ ~ ~ ~  = a 2 / u 4 >  a2 

where we have used the fact that U = aw, and the velocity of the charge is always less 
than unity. 

Thus, inside the circle t # 0,x2 + y 2  = a2 there is no point for which B = 0 for any 
time. Evidently, radiation is present in this region; and by our preceding arguments, the 
charge in question radiates. 

We consider finally the motion 

2 = +(a2 + pt2)1’2. 
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The condition B = 0 implies 

r = z i  

or 

Thus, while there is no radiation at any point on the z axis (the z axis itself being a line 
along which any physical observer can move), for all other points B = 0 over the 
hypersurface defined by equation (5). However, as 

6(R - t)2P(l - P )  > 
2 ($,)2-(32-(g)2-(a2= 1+ ff 

this hypersurface is space-like for all r (except r = 2). Consequently there is radiation at 
all such points, and the charge radiates. 

For hyperbolic motion, with uniform acceleration, P = 1 and the B = 0 hyper- 
surface is t = 0. This surface is space-like and hence there is no time-like line over which 
B = 0, except for points on the z axis. Consequently this charge also has a radiation 
field. 

5. Fields in the rest frame 

A transformation which reduces a charge moving along the trajectory z = +(a2 + pt2)1/2 
to rest has the form: 

z ’ =  f(z2-Pt2).  

t’ = d(tz-’/P) 

The metric may be diagonalised by a ti ansformation: 

where f and 4 are arbitrary functions. 

may be chosen to be static by choosing (see Moller 1957) 
In the case of uniform acceleration, the metric in this co-moving non-inertial frame 

x = X I  Y = Y t  

z = ( z ’  + a )  cosh(t‘/a) 

t = ( z ’ + a )  sinh(t’/a). 

Then direct transformation of the fields (or potentials) yields 

F i 2  = F h 3  = F;1 = 0 i.e. B’=O 

where 5 is as in equation (1) and 

c = p 2 + a 2 +  ( z t + a ) 2 .  
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Since B‘ = 0 in this frame always, there seems to be no radiation in this frame. This does 
not contradict our conclusions in 5 4 since this frame is non-inertial and the metric 

ds2 = (1 + ~ ‘ / a ) ’  d t 2  - dX‘2 - d ~ ‘ ~  - dz” (8, 

does not tend to Minkowski form even asymptotically. 
Furthermore the metric has singular behaviour at the point z‘ = -cy. This point 

behaves as an event horizon at which the proper time interval vanishes. The fields also 
vanish at this point, but this is a phenomenon peculiar to this particular frame. 

For p Z 1 the metric cannot be chosen to be static for any choice of the functions f 
and 4, and in general the magnetic field does not vanish. 

Here we come across a peculiar characteristic of uniform acceleration whose 
implications, if any, in the equivalence principle are not very clear. 
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